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THE METHOD OF PURSUIT BY SEVERAL CONTROLLED OBJECTS OF DIFFERENT TYPES* 

N.L. GRIGORENKO 

The problem of the pursuit of one evader by several controlled objects of 
different types is examined. The sufficient conditions are obtained for 
the pursuit game to terminate in a finite time. The proposed method of 
pursuer interaction assumes that the pursuing players are separated into 
two groups, the first of which holds the evader in some domain, while the 
second searches for the evader in this domain. The paper touches on the 
researches in /l-9/. Typical examples illustrate the results. 

Let the motions of the vectors Zlr....Zm in the n-dimensional Euclidean space Rn be 
described by the equations 

Zi' = cizi + si - ", zi (0) z zi", i = 1, . . ., m (1) 

*Prikl.Matem.Mekban.47,6,891-897,1983 
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where C, is a constant matrix of dimensions n x n, ui EP~, vEV, PicR”*, QCR’ are convex 
compacta. In R” there are specified the terminal sets M,, M2, . . ..M., where Mi=Mi’ + Mi2$ 
Mi’is a linear subspace in R", MiZ is a convex compactum in Li', Li' is the orthogonal com- 
plement to the subspace M, 1 in R".The data listed above describe a many-person differential 
game (l)in which a group of pursuers participate having at its disposal a control vector U = 
(u,, a21 * * -1 4ld and a pursued player at whose disposal is a vector v. We will consider a 
pursuit problem for the differential game (1). 

As the evader's strategy we fix a class of programmed measurable functions V(t)= Q. t>O. 
As the i-th pursuer's strategy we fix a class of functions 

u' (t, v, 2’): IO, co) x Q x R”“+ RP’ 

for which the following conditions are satisfied: 

1) U' (t, v, 20') E Pi for all 12 0, v EQ; 
2) the function ui (t) = u' (6 v (t)? zO) is Lebesgue-measurable in the interval [O,oo) for 

an arbitrary measurable v(t)~ Q, t 20. 
Following /5/, the strategies U' (t, v,z') are called stroboscopic. The pursuit strategy 

is the vector u (t) = (~1 (t), . . ., urn (t)), where u, (t), i = 1, . . ., k is the i-th pursuer's strobo- 
scopic strategy, U, (t), i = k+ 1, . . . . m is the i-th pursuer's programmed strategy, O<k,<m 
(if k = 0, ui (t) (i = 1, . . ., m) are the i-th pursuer's programmed strategies). 

The pursuit problem can be formulated as follows. It is required to find a condition for 
the parameters of game (l), for which there exists, for prescribed initial states ~1“ (i = 1, . . . . 
m) a pursuit strategy u* (t) = (ul* (t), . . ., IL,* (t)) such that at least one vector zi(() (i x 1, 
. .( ml3 which is a solution of the equation 

Zi' = C*Zi + Ui* (t) - V (t)q 21 (O) = iii0 

arrives at the corresponding terminal setMlno later than some finite instant of time. 
Let n1 be the orthogonal projection operator fromR"onto L,l, and lettbe the geometric 

difference of the sets /l/. 

Condition A /l, 7/. Upper-semicontinuous functions 

q(t,q:[O,oo) x [O,t]+R? xt(ttz)>O, &t,z)dr= 1 
0 

and sets Mi’v Mi2 2 MfS # 0, exists such that the sets 
. 

rut (t, .c) = (4, (t, 7) M,3 + n*exp (t - 7) C,.P,) 1 
q exp (t - T) C4.Q 

are non-empty for all 'c, t, 7EI0, tlr t>O 
From Condition A and the conditions for game (1) it follows that a Borel-measurable func- 

tion fli (t, r): IO, 00) X IO, tl + P, fij (t, 7) E Wf (t, T) exists. Let k be an integer, 0 <k,< m, de- 
fined by the following condition: the parameters defining game (1) satisfy Condition A for 
t = 1, . . ., k ; they do not satisfy Condition A for i = k + 1, . . . . m. If Condition A cannot 

be satisfied for any i, we take k =O. 

Let Mi4 c Mi” L Mf and ml4 E M,‘. For i = 1, . . . . k we consider the functions 

If a number i and a positive constant T exist such that (~,(T,zt', ml*)= 0, then the pursuit 
problem is solvable at the instant T for game (I) in position 2' /l/. Therefore, without loss 
of generality, we will henceforth assume that c+~# (t, zl”,m14)#0 for all i, t, mtb, t > 0, mi’ E 
M*&. We set /7, 0/ 

h. 0, t, z, v, Ito, mt4) = max {h: h > 0, --hq~, (t, aio, ml’) E 
(-xt (t, z) Mi3 + nfexp (t--)C4.Pt-q exp (t-r) ci.v- 
br (t, T))), h (i, t, T, v, zio, MJ = max h (i, t, ‘c, v, qO, mid) 

mpE&lp 

12) 

If k = m, the sufficient conditions for the pursuit problem to be solvable in such a game 
have been formulated, for example, in /9/. We shall assume k <m. Let T be an arbitrary 
positive constant, and u,(t) be arbitrary programmed controls, i = k + I, . . . . m, 0 < tQ T. 
We put 

E(t,T,z’)={v(%): O,<%<t, v(z)~Q, ih(i,1’,r.v(7) 
0 

zio, Mi4) d7 < 1, i = I, . .A} 
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Qj(t,V(‘))=-_SnjeXp(t-T)C,.v(T)dT 

V, (t, T, f’) = “(9, (6 v(. N: IJ (z) E E (t, T, 2”)) 

Nj (t) =- ‘Ij exp tCj .Z*‘- SXjeXp(f--)Cj.Uj(r)dT+illja 
0 

N(t)=jQ+INj(t), t,<Tv j=k+L....m 

Assumption 1. The vectors Q(tt V (.)) are independent of j for all V (r) E E (t, T, z"), 
0 < T < t < T; Lj’ = R”. 

We set 

v (t, T, f) = v, (t, T, z’), q (t, v(‘)) = ‘?J (b v(‘)) 

Assumption 2. For the position z0 = (zl", . . . . z,,,') a positive constant T and admissible 
controls u1 (t), 0 < t Q T, i = k + 1, . . ., m exist, such that for some instant t* < z IV (t’) 3 
v 0’9 T, z’). 

Condition B. We saw that Condition B is satisfied in the interval [T,, T,l,O < T, < T, < T 
for the sets N (t), V(t, T, z’) (the condition for the set N(t) to work its way through the set 
V (t, T, 2”) in the interval IT,, T,]), if a continuous function 5 (z, t): Rv x [T,, TJ+ RI exists 
such that 

a) V(T,,T,z")&: 5(5, T,) < 0); V (TIT, zO)flG: S (2, T,) =0) #0; 

b) N (t) 1 V (t, T, z”) /-j {I: 5 (I, t) = 0) for all t E [T,, T,l; 

c) N (T,) 3 V (T?, T, z') 0 (~5 (5, T,),< 0). 
Assumption 3. For a position z0 controls nt (t), i = k + 1, . . ., m and positive constants 

T,, T,, T, T, < T, < T exist, such that Condition B is satisfied in the interval [T,, T,l for 
the sets N (t), V (t, T, z’). 

Theorem. If Assumptions 1, 2 or 1, 3 are satisfied at position zO, then the pursuit 
problem is solvable up to the instant T for the position 2'. 

Proof. Suppose Assumptions 1 and 2 are satisfied for position z3 . We consider the 

function h (i, t,r,v,zio, mi4) defined by relation (2). According to (2), the function h (i, t, z, u, 

zi”7 mr4) is upper-semicontinuous in the collection of arguments v, mir for fixed T and is 

Borel-measurable in T for fixed v,mtp (the arguments i, t,zi’ are fixed). Consequently /lo/, 
the compact set 

Ai (t, T, U) = {mid: ml4 E Mi4, h (i, t, 7, v, zio, mi4) = I. (4 t, 7, v, ziO, Mi4)} 

is upper-semicontinuous by inclusion in v for fixed T and is Borel-measurable in t for fixed 

U, and a Borel-measurable function mi4 (t, r, v) E Ai4 (t, 2, v)exists. Let v (t) be an arbitrary 
programmed control of the evader. We direct the i-th pursuer (i = 1, . . ..k) to construct his 
own control ui (t) at the instant t, t 2 IO, Tl , in the following manner. If at the instant 

t>o 

then the functions mi3(f)EMi3, 111 (t) E pi are a solution of the equation 

-xi(T,t)miJ(t)+niexp(T -t)Ci* (~~(t)-V(t))-_i(T~t)=-_(i~T.t,V(t),~i~~Mi~) X (3) 

(ni exp TC,. zio- mip (T, t, u(t)) + f pi (T, I) dT) 
0 

If t,' is the first instant when pi (t,‘, v (T), 0 -< T < tli) = 0 , then for t E (t,‘, T] the 

functions mi3 (t) E Mi3, U[ (t) Epi are a solution of the equation 

-xi (T, t) mi3 (t) + nf exp (T - t) Ci. (it (t) - v (t)) -pi (T, t) = 0 (4) 

By virtue of (l)-_(2) and Condition A one of many solutions of (3) and (4) exist. By construc- 
tion, h (i, T, t, v (t), zt, M:), mi4 (T, t, u (t)) are measurable functions of t for fixed i, T, z". 
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Consequently, by virtue of Filippov's theorem /lo/, (3) and (4) are solvable in the class of 
measurable functions. We direct the j-th pursuer (j = h- + I,..., m) to choose the controls 
uk+l (t), . . ., &,a (t) for which Assumption 2 is satisfied. 

By applying strategies u*(t) the pursuers can guarantee the termination of pursuit by 
instant T. If 4 (t, v (*))7? V (t, T,z') for at least one t<t*r then the evader at instant T 
is caught by one of the pursuers numbered i = 1, . . . . k. Indeed, in this case we can find a 
number i such that 

We will denote by t,the first instant t when 

Using (31, (4) and the Cauchy formula for (11, we obtain 

(5) 

5 
i h (i, T, T,V (T), zp, Mt) dr) + f h (i, T, T, V:(T), 
0 0 

z:, Mi’) mi’ (T, TV u (T)) do + j Xi (TV t) rni* (r) dr E Mi” 
cl 

i.e., the i-th pursuer catches the evader at instant T. 
If Q (t, v(.)) E J'(t, T, z") for all t < P, then at the instant P <T the evader is caught 

by one of the pursuers numbered f = k+ 1, . . . . m by virtue of Assumption 2. 
SupposethatAssumptionsland3 aresatisfiedforposition z" - Wedirectthei-thpursuer (i= 

I k)toconstruct his OWII control a, (t) asasolutionofEqs.(3) ,(4) I andthe j-thpursuer (j = 
k + ;: . . ., m) to choose the controls u,+~ (t), . . ., u, (t), for which Assumption 3 is satisfied_ 
We will show that by applying strategies ut (t) the pursuers can guarantee that the pursuit 
terminates by instant T. Let v(t)be an arbitrary prograxzaed control of the evader. 

v (*))* SZ V (t,, T, z") 
If q VL1 

for at least one ts< T, then the evader at the instant T is caught by 
one of the pursuers numbered i = 1, . . ., k (see (5)). 
V (t, T, z’). For such a control v (t),tE [O, Tl , 

For all instants t < T let q (1, v (.))E 

IT,. T,l 
two cases are possible:either for all t: t E 

q (tv v (*)) E V (6 T, z”) n (2: E (z, t) < 0) 

or an instant t*: t* E IT,, T,] exists such that 

q(f+, v(.))EV(t*, T. z')fl{z: S(r, t*)>O) 

In the first case, according to Assumption 3 and paragraphs b) and c) of Condition B, 
the evader is caught by one of the pursuers numbered k+ 1, . . ..m at instant Tz. In the 
second case we have 

5 (q CT,. v (.)I, T,) < 0, 5 (q (t*v v (*)h .t*) > 0 
whence by virtue of the continuity of E in all arguments it follows that an instant e E IT,, 
t*] exists such that & (q&l, v(e)), e) = 0. On the strength of Assumption 3 and of item b) of 
Condition B, this signifies that the evader is caught by one of the pursuers numbered k+ 1, 
. . . . m at instant e. The theorem is proved. 

Notes. 1’. Assumption 1 is satisfied for example, for a class of games such as the fol- 
lowing. The equations of motion of the pursuers are Zi'=Aizi+Ui, UiEYit fei,...,m,~i,~g~R", 
the equations of motion of the evader are u'= By+", UEQ, I/, VER". Pi,Q are convex compacta, 
and Ai, B are matrices of appropriate sizes. The game terminates if for at least one i we 
have, at some instant t, ITiZi* (t) + MS 7 Xiv (t), 
convex COmpaCtUm in R1. In this case, 

where JIM iS an (IX n)-matrix, 1 e 16 n,,$fi iS a 

ni= n, i= k+l,... ~TI corresponds to Assumption 1. 
2O. Condition B (the condition for set N(t)to work its way through set V (t. T, 20) in 

the interval [T1, T,]) is the condition for the following controllability problem to be solvable. 
At each instant tE IT,, T,] the points 

-nj exp tCi’zi’- 
s 
njexp(t-~) Cj.uj (~)ds =at(t) 
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must be located on a continuous surface (z:E( IT t)=Ol such that the covering problem 

d (aj(f)+iClj')I)v(t,T,ZD)n (I:E(z,t)=O) 
j-k+1 

is solvable and the conditions 

N (T,) 2 V (Ts, T, 2") r, (2: 5 (2. T,) B 0) 

are satisfied at the instant T, . The surface (z:t(z,t)= O),~E [T,,T,] must satisfy two condi- 
tions: for the set V(t, T, L”), for any COntinUOUs curve q(t) E V(t’, T, 2’). TV [T,, T,], such that 
5 (P (MY :a) > 09 5 (9 (tl)? t1) > 0, T, c: to d t, < T,, an instant t, E Ito, hl exists such that 5 (1c1 (tJ, L) = 0; 
b) its intersection with V(t, T,z") can be covered by sets N,(t) under certain admissible con- 
trols uj (t). 

To solve the covering problem we can use the results on lattice coverings by spheres, 
generalized cylinders or other convex bodies /ll, 12/. A solution of the covering problem is 
information on the set al(t) of all possible locations of the lattice nodes al(t)=R,(t) for 
which the problem of covering the set V(t, T, L’)~{z: E(z, t)=O) by the sets Nj(t), j= k $1, . . . . m 
is solvable. The controllability problem then consists of answering the question of whether 
it is possible to retain e,(t) in the set Q,(t) for certain admissible u,(t) in the interval 
IT,, T,I. 

We present some examples of choosing the surface +:E(~, t)= o) and the controls u,(t) 
which ensure that Assumptions 1-3 are satisfied. 

Example 1. In (1) let 

Ci = 0, n = 2, Pi = spi' (0). Q = s,* (O), M+' = (O}, M{' = St,* (0) 

q=E, i=l,...,m; Vi=a, li=O, i=l,...,k; &<a, 11 > 0 

j = k + 1,. . ., m- 

(E is a unit 2 X 2 matrix). Assumption 1 is satisfied in the case being examined; by (2) we 
have 

I (i, t, 7. U, Zi’, 0) = [(Z;“, U) $ ((Zi’y 4’s II Y” II’ (0’ - (v* u)))l"' / II z”i I?, 

i = I,. . . . k 

~~(t,T.~“)~X(t,T,~n)=~-~~(~)~~:(~~,-~~(~)d~)~-~, i=I,....k) 

0 0 

Thus, in the case in hand the set V(t, T, 2') belongs to the convex polyhedral set 

Kz(z:(zv&)>-~, i=,,...,k) 

We present three typical cases where N(t) works its way through V (t, T, 2') (inside K = K (t, 
T, 2")). 

A) k = 3, m = 5; pi= a = 1, i = 1,2,3; p1 = 112, 1, = 1 s/s. j = 4,5; zlo = (2.0). S,O = (3,2), 18“ = (-2,1), Z,O = (3, -7). 

260 = (-3 l/c, -10 l/z). The set K = (I : I* > -1, 32, f 2r, > -6'/,. - 22, + z, > -2'/.>). We put 

E (z, t) = zg + v,t - iov,. t > 7, T, = 7. 

The controls u,(t), O& (t),O < tc7 , which for t= T, = 7 ensure that item a) of Condition B 
is satisfied have the form U, (t)= (-l/lrO), I+ (t) = (O,l/)) , while the controls ur(t), us(t) which ensure 
that items b) and c) of Condition B are satisfied have the form u,(t)=: (O,~/,),U~ (t)- (0,‘/,),7< 
t s 27, T, = 27. 

We note that in this position the pursuit game is solvable without the participation of 
pursuer number 2; however, his presence enables the pursuers to reduce the capture tine. 

B) k = 2, m = 4; pi = G = 1, i - 1,2;p, = I/*, 1, = $/,, j = 3.4; zIo = (0, --1), +’ = (0,2), 13’ =I (-5.2 ‘/a), ~4’ = (5. 

-2 I/,). The Set K = (2: -i < z2 <*I,). We put 

E (I, t) = zl' + (I) f l/J2 - (7 l/s - ‘/, t)*, t& 5, T, = 5 

The controls us(t),u,(t),O< t< 5, which for t= T,= 5 ensure that item a) of Condition B is sat- 
isfied have the form us(t)= (0, -l/%), II, (t) = (0, l/J, while the controls us (0. ur (t) which ensure that 
itemsb) and c) of Condition B are satisfied have the form 

8&(L) = (I/*, O), u, (t) = (- ‘I,, O), 5 < t< 15, T, = 45 

C) k=O,m=8,~=1,p~='/,,l~ =4,j=l,...,8; 
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27”=(5, iO), z*‘= +, +5j 
i _ 

The set K = it*. We put 

5 (2, t) = 21) + z*I - (15 - I/* i)', t ,, IO. T, = 10 
The controls uJ(t), j= 1,. . ., 8.0 < tQ 10 , which for f= T,= 10 ensure that item a) of Condition 
E is satisfied have the form 

u, - e = (I/*, G), ua = ~4 = (0, I/*), ug = ua = u: = (- I/*, 0), ud = (0, - I/,) 

while the controls v](t), j= i,...,8 , which ensure that items b) and c) of Condition B aresat- 
isfied have the form 

Ul (4 = (‘It, 01, %3 (4 = (r, VI, ua (1) = (09 %I 

UC (t) = (- 7, v), us (t) = (-% 017 % (4 - (- YI -I9 

U’I (t) = (0, - I/*), v+ (t) = (v, - 7’), 10 < t< 22, T, = 22 (v = i/zl/ri 

Example 2. In Eq.(l) let 

li=O, pi=c, i=l,..., k 

pi<% Q>O, i= k+i,...,m 

(E is a unit 2 X 2 matrix). We put zi = (Zil, Q), ii19 q,E. R', 1s 1,. - -9 m. Assumption 1 is satisfied 
in the case in hand: according to (2) 

h (i. t, r, V, si"* 0) = I(zi,' + @to* (1 - r) VI + ((fQ*O + Zig0 t, (1 - 7) V)* f 

II -%I0 + Zi*‘l IF (a’ (t - 7)’ - (Vt v) (t - @“))‘“I / 1 Silo + Sil’t r 

1=1,..., k, Y (t, T, 9’) E K (t, T, z”) = 

We Present a typical case of setN(t)workingitswaythroughsety(r, T, zD) by setN(t) (inside K(t, 
T, 0). We pLlt k = 2, m = 4; pi = Q = 1, f = 1, 2, pJ = I/,, ZJ = 2, j = 3,4; zllo = (0. -3}, zl10 = (0, I/*), zz10 = (0,2), 
z**o = (-l/s, -‘/& %I0 =(-4 l/z, -l), La0 = (4, O),Zd10 = (-4 I/*, 3), ZI10 = (4,-*i,). Inspecting T>O and investigat- 
ing the possibility of *solving the capture problem for domain K(t,T,zO), we note that it is 
solvable, for example, when ~=3, for 

K (i, 3, z") = {z : z E I?‘, (1, aI) > (t - 3)r - J/, 

JfF 
(Z*%)>(1-3)t-- , E(z,f)Pz1-4~/L+4t+; I 

t> 0, T, = 0, 01 = (0, -i), 0, = (1, 4x), x = -17pm 

The controls u,(t), u4 (t), TV lo, 31, ensuring that Condition B is satisfied have the form ua (t) = 
u4 (t) = (l/r, 0). 

1. 
2. 
3. 

4. 

5. 
6. 

7. 

8. 

9. 
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ON A GAME OF OPTIMAL PURSUIT OF AN OBJECT BY TWO OTHERS* 

A.G. PASHKOV and S.D. TEREKBOV 

A game problem of the simple pursuit of one object by two others, the former 
having a speed advantage , is analyzed. The duration of the game is fixed. 
The payoff functional is the distance between the object being pursued and 
the pursuer closest to it when the game terminates. Similar problems were 
examined in /l-7/. 

The motion of pursuers Pi (y@)) is described by the equations 

(1) 

The object E(z) being pursued moves in accordance with the equations 

21 *= VI, z*'=L't; I u I <Y, Y ; p (u = {v,, u*}). (21 

Here IL(~), v are the control vector. The time the game ends t= 6 is fixed. The game's pay- 
off y is the distance between the object being pursued and the pursuer closest to it at the 
instant t = fl, i.e., 

y = min (.21(6) - &’ (9))l + (22 (it) - yP’ (u))2]“’ (3) 

ez Henceforth we will assume that / p,"P," I> 0. The case 

PI0 = p,'will be considered separately. In a plane we set up 
a fixed rectangular system of coordinates with axes*, and g2. 
We direct the abscissa axisq,from the initial position of the 
first pursuer PI" (YQ(") to the initial position of the 
second pursuer P2” (yn(*)). We direct the ordinate axis Qz through 

G 
the midpoint of the segment LP1’P2’] perpendicular to it, so 
as to obtain a right-oriented system of coordinates (Fig.1). 
The domain of attainability c:Ci) (t, Y(i),@) of the objects P, 

% (i=1,2) f rom the position (t, YC') (t)} by the instant t =6 is 
a circle of radius r(t)= ~(6 - t) with centre at the point 

(Y(') (1)). The domain of attainability G (t, I, 6) of the object 
E from position {t,z (1)) is a circle of radius R (t) = V (6 - t) 

Fig.1 with centre at the point (z (t)}. Suppose that at some instant 
t the object Pi (i = 1, 2) is at the position {Yl(') (t), Y,") (t)), 

y,'l) (t) = -y,c*J (t), Y,Cl' (t) = Yz(:) (t). At the instant t the object E is at position {Z1 (t), Z2 (t)). 
The attainability domain G (t, z(t), 13) of the one being pursued intersects the axis q2 at the 
points A* (0, 9') and A,(O, 9*) (Fig-l) 

9* = 2: (t) + ((v (tt - t))' - 212 (t))"' (4) 

9, = Z? (t) - ((v (r, - t))e - zlz (f)) "l 

We see that the distances between the pursuers Piand the points A*,A,satisfy the following 
relations: sign (I PiA* 1 - I PIA, I)- sign (z, (t) - Yz(') (t)). 

It can be shown that the optimal programmed strategy for object E to evade pursuers Pi 
at the instant t =6 fram a specified initial position {to, z,,} will be the extremal control 

" (t) (to Q t < fi) directed towards the point A*if 

z2 (&I) - Yz(') (to) > 0 
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